skip to main content


Search for: All records

Creators/Authors contains: "Kaleta, Jiří"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cucurbit[7]uril complexes aggregate into well-defined trimers in dimethyl sulfoxide in the presence of a selection of cations, as long as the host cavity is filled with a guest that leaves one carbonylated portal available for cation binding.

     
    more » « less
    Free, publicly-accessible full text available September 13, 2024
  2. null (Ed.)
    Solvent-free mechanochemical synthesis (ball-milling) was used to prepare inclusion complexes with cucurbit[7]uril and four model guest molecules (adamantane, adamantyl-1-amine hydrochloride, toluidine hydrochloride, and p -phenylenediamine dihydrochloride). Successful formation of individual inclusions was independently confirmed by one- and two-dimensional solid-state NMR techniques and differential scanning calorimetry. Mechanochemical synthesis represents an alternative path towards new types of cucurbit[ n ]uril/guest inclusion complexes that are not accessible due to limited solubility of the individual components. 
    more » « less
  3. A new class of rod‐shaped strongly dipolar molecular rotors for insertion into channels of hexagonal tris(o‐phenylenedioxy)cyclotriphosphazene (TPP) has been examined. Seven different 3,6‐disubstituted pyridazines and one singly 3‐substituted system have been prepared and studied by solid‐state nuclear magnetic resonance (NMR), X‐ray powder diffraction, and dielectric spectroscopy. NMR and X‐ray diffraction both show that all but one of these molecular rotors form hexagonal bulk inclusion compounds with TPP. In‐plane lattice parameters for the hexagonal phases increase with the size of the end group, which also controls the energy barriers for rotation of the pyridazine dipole. The barriers range from ≈4 kcal mol−1for small or flexible end groups to less than 0.7 kcal mol−1for 3‐methylbicyclo[1.1.1]pent‐1‐yl end groups after annealing to 235 °C, and an interpretation of these differences is offered. Computer modeling of the relaxed TPP channels followed by density functional calculation of the environment for one of the rotors provides quantitative agreement with the observed barrier. The systems with the lowest rotational barriers show signs of collective behavior, discussed in terms of antiferroelectric intrachannel and ferroelectric interchannel dipole–dipole interactions. A Curie temperature of 22 K is deduced for 3,6‐diadamant‐1′‐ylpyridazine, but no ordered dielectric phases are found. Conclusions have been drawn for improved rotor design.

     
    more » « less